DIFFUSIVE FLOW TO A SPHERE AT SMALL AND
MODERATE REYNOLDS NUMBERS
APPROXIMATION OF A DIFFUSION BOUNDARY LAYER
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The relative importance of purely diffusive flow to a spherical object is often of interest in connec-
tion with several problems in the physics and physical chemistry of the atmosphere [1, 2]. Molecular
transport in very viscous liquids and the transport of small aerosol particles (r; < 107 ¢m) in gases by
means of Browian motion are described by the same equations (when linkage of particle is neglected). We
note that the deposition of aerosol particles on a spherical object of radius r,, due to linkage, is of the
order (ry/r;)?, sothis effect maybe neglected if the purely diffusive flow is at least an order of magnitude
greater than (ry/ry?%.

The similarity criteria for this problem are the Reynolds number R of the flow and the Peclet num-
ber A:

R=ru,/v, A=ru /D

Here u,, is the velocity of the unperturbed flow, vis the kinematic viscosity of the medium, and D is the
diffusion coefficient of the substance. For the case R « 1, in which the Stokes approximation may be used
for the hydrodynamic velocity field u,, in steady-state flow around a sphere, and A > 1 (in the approxima~
tion of a diffusion boundary layer), the following equation was obtained in {1] for the dimeusionless integral
flow:

7= 7.8480"

Below we will refine this equation for the case of moderate R (R =< 20). At such R, the flow is of a
more or less smooth nature: an eddy begins to form behind the sphere at R ~ 8; R ~ 20, it still makes up
a small part of the flow. We note that for a drop of water falling freely in air, we have R~ 20 at ry = 0.02
cm,

In the spherical coordinate system {£,6, ¢} (¢ is the distance from the sphere, 0=<9 <7, 0 < ¢ < 27),
the basic equations for the steady-state problem are
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Fig. 2

We note that Egs. (4) are not limited: they always hold for viscous flow around a sufficiently smooth bounded
surface. Using these equations and converting Eqgs. (1) to those of a diffusion boundary layer by the familiar
method, we find
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The solution of Eq. (5) is
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For R < 8, we have uy > 0 for 0 =9 = m; for this case, we thus have

T
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For R > 8, u, becomes negative in a certain 6 range: Uy <0,60,< 6 = w. We will show below that the
contribution to I from the internal 6, < § <7 is negligibly small, so we can replace the upper limit in Eq. {7)
by 6y in calculating the integral flow. It should also be noted that as § — 7, Eq. (6) becomes inapplicable.
The important change in n occurs at distances of the order of p.?\"i/‘"’ from the sphere, while u increases
without bound as § —x . Since the first terms in the expansion of u, and u, in powers of { were used in
deriving Eq. (6), it cannot correctely reflect the behavior of n at the bottom of the flow. In addition, the
inequality

Ong/08 == 0, G (8)
which contradicts the axial-symmetry conditions, follows from (6).

Inequality (8) yields an important result. Although the behavior of n at the "bottom" of the flow is not
described correctly by Eq. (6), there is no reasou to doubt the correctness of asymptotic relation (7) for the
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integral flow, Moreover, using a procedure analogous to that in [3] in an examination of diffusion from a
viscous flow toward a circular cylinder (and toward a system of cylinders), we can in principle construct
for I the asymptotic expansion
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In expansion (9), N is finite (we note however,that it is clearly no smaller than unity). Because of (8),
there must exist some my > 1 such that, when m > m,, the quantity j sin ¢ will have a nonintegrable sin-
gularity as 6 — 7. '

For small R, we can use the Oseen approximation for u, which gives the term following the Stokes
term in the asymptotic expansion in R. We find
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According to [4], the term following the Oseen term is of the order of R?In R, S0 we have
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For moderate Reynolds numbers, we can use the numerical calculations of Jenson [5]. It is not
difficult to show that u, = w), where w, is the vorticity of velocity field u at the surface of the sphere.
Values of w, were given in [5] for R = 2.5, 5, and 10 at steps of 12° and for R = 20 at steps of 6°. Figure
1 shows dependences of the quantity 1/2 sin § w, on § coustructed from these data; curves 1-5 correspond
to R=0, 2.5, 5, 10, and 20, respectively. The 6 dependence of j, is shown in Fig. 2; plots a-d correspond
to R = 2.5, 5, 10, and 20, respectively. We note that in the calculation of j, for angles near =, a very large
diffusive transport of the substance was assumed across the boundary of the steady-state eddy region. This
assumption significantly increases j, for these angles, for the diffusive transport is actually small, while
there is no convective transport into the eddy region, since at these R there is a steady-state flow around
an object of complicated shape — the sphere and the connected eddy ring, without a flow of liquid into the
leading part of the eddy ring or into the "bottom" region. Convective transport into the wake region will
occur at larger R, when the flow becomes markedly nonsteady-state. However, despite this fictitious in-
crease in jj, Fig. 2 shows that its value at the "bottom" of the sphere is negligibly small in comparison
with that at the leadingpart of the sphere.

Numeriecal integration of j, over the sphere yields the integral flow for R = 2.5, 5, 10, and 20. The
results are approximated well by the analytic expression

I~ 17.848 (14 0427 R¥)A ™+ 0B (13)
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from which it follows that the relative increase in I as R changes from 0 to 20 is = 30%. It should be noted
that this change in I is small for such a large change in R.

Deformation of the spherical surface has an interesting effect on the diffusive flow. We consider
deposition on an ellipsoid of revolution at R —0 (the Stokes approximation). For the I calculations for b
(the ratio of the longitudinal axis to the transverse axis) not too small, it is convenieunt to use the coordi~
nate system
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Here L, Lg, L s aTre the Lamé coefficients. In this coordinate system, as in the case of the sphere, we
can fmé an equatlon for the diffusion boundary layer. The solution of this equation for b not too small is

again of the form (6), but with a different u value. In this case, we have
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Figure 3 shows the dependence of ¢ on b. We note that as b increases there is a considerable defor-
mation of the thickness of the deposition at the leading part of the sphere: the thickness increases in the
lateral regions and decreases at the center (Fig. 4 shows the dependence of j, on @, illustrating this effect;
the thickness is given for a diffusive deposit on an ellipsoid of revolution for b = 0.4),
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